Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1323266

ABSTRACT

Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air-liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.


Subject(s)
Airway Remodeling/drug effects , Alveolar Epithelial Cells/drug effects , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Differentiation/drug effects , Cells, Cultured , Cigarette Smoking/metabolism , Epithelial Cells/drug effects , Humans , Neoplasms, Basal Cell/metabolism , Primary Cell Culture , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Smoke , Smoking/adverse effects , Smoking/metabolism
2.
Transfusion ; 60(9): 1987-1997, 2020 09.
Article in English | MEDLINE | ID: covidwho-796294

ABSTRACT

Risk assessments of transfusion-transmitted emerging infectious diseases (EIDs) are complicated by the fact that blood donors' demographics and behaviors can be different from the general population. Therefore, when assessing potential blood donor exposure to EIDs, the use of general population characteristics, such as U.S. travel statistics, may invoke uncertainties that result in inaccurate estimates of blood donor exposure. This may, in turn, lead to the creation of donor deferral policies that do not match actual risk. STUDY DESIGN AND METHODS: This article reports on the development of a system to rapidly assess EID risks for a nationally representative portion of the U.S. blood donor population. To assess the effectiveness of this system, a test survey was developed and deployed to a statistically representative sample frame of blood donors from five blood collecting organizations. Donors were directed to an online survey to ascertain their recent travel and potential exposure to Middle East respiratory syndrome coronavirus (MERS-CoV). RESULTS: A total of 7128 responses were received from 54 256 invitations. The age-adjusted estimated total number of blood donors potentially exposed to MERS-CoV was approximately 15 640 blood donors compared to a lower U.S. general population-based estimate of 9610 blood donors. CONCLUSION: The structured donor demographic sample-based data provided an assessment of blood donors' potential exposure to an emerging pathogen that was 63% larger than the U.S. population-based estimate. This illustrates the need for tailored blood donor-based EID risk assessments that provide more specific demographic risk intelligence and can inform appropriate regulatory decision making.


Subject(s)
Blood Donors , Blood Transfusion , Blood-Borne Infections/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Imported/epidemiology , Coronavirus Infections/epidemiology , Environmental Exposure , Risk Assessment/methods , Surveys and Questionnaires , Travel-Related Illness , Adolescent , Adult , Aged , Aged, 80 and over , Blood Banks , Blood Donors/statistics & numerical data , Blood-Borne Infections/blood , Blood-Borne Infections/prevention & control , Blood-Borne Infections/transmission , Communicable Diseases, Emerging/blood , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Communicable Diseases, Imported/blood , Communicable Diseases, Imported/prevention & control , Communicable Diseases, Imported/transmission , Coronavirus Infections/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Decision Making , Female , Humans , Male , Middle Aged , Middle East , Middle East Respiratory Syndrome Coronavirus , Sample Size , Sampling Studies , Transfusion Reaction/prevention & control , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL